How Geniuses Think

How Geniuses Think

Create April 28, 2012 / By Michael Michalko
How Geniuses Think
SYNOPSIS

Thumbnail descriptions of the thinking strategies commonly used by creative geniuses.

How do geniuses come up with ideas? What is common to the thinking style that produced "Mona Lisa," as well as the one that spawned the theory of relativity? What characterizes the thinking strategies of the Einsteins, Edisons, daVincis, Darwins, Picassos, Michelangelos, Galileos, Freuds, and Mozarts of history? What can we learn from them?

For years, scholars and researchers have tried to study genius by giving its vital statistics, as if piles of data somehow illuminated genius. In his 1904 study of genius, Havelock Ellis noted that most geniuses are fathered by men older than 30; had mothers younger than 25 and were usually sickly as children. Other scholars reported that many were celibate (Descartes), others were fatherless (Dickens) or motherless (Darwin). In the end, the piles of data illuminated nothing.

Academics also tried to measure the links between intelligence and genius. But intelligence is not enough. Marilyn vos Savant, whose IQ of 228 is the highest ever recorded, has not exactly contributed much to science or art. She is, instead, a question-and-answer columnist for Parade magazine. Run-of-the-mill physicists have IQs much higher than Nobel Prize winner Richard Feynman, who many acknowledge to be the last great American genius (his IQ was a merely respectable 122).

Genius is not about scoring 1600 on the SATs, mastering fourteen languages at the age of seven, finishing Mensa exercises in record time, having an extraordinarily high I.Q., or even about being smart. After considerable debate initiated by J. P. Guilford, a leading psychologist who called for a scientific focus on creativity in the sixties, psychologists reached the conclusion that creativity is not the same as intelligence. An individual can be far more creative than he or she is intelligent, or far more intelligent than creative.

Most people of average intelligence, given data or some problem, can figure out the expected conventional response. For example, when asked, "What is one-half of 13?" most of us immediately answer six and one-half. You probably reached the answer in a few seconds and then turned your attention back to the text.

Typically, we think reproductively, that is on the basis of similar problems encountered in the past. When confronted with problems, we fixate on something in our past that has worked before. We ask, "What have I been taught in life, education or work on how to solve the problem?" Then we analytically select the most promising approach based on past experiences, excluding all other approaches, and work within a clearly defined direction towards the solution of the problem. Because of the soundness of the steps based on past experiences, we become arrogantly certain of the correctness of our conclusion.

In contrast, geniuses think productively, not reproductively. When confronted with a problem, they ask "How many different ways can I look at it?", "How can I rethink the way I see it?", and "How many different ways can I solve it?" instead of "What have I been taught by someone else on how to solve this?" They tend to come up with many different responses, some of which are unconventional and possibly unique. A productive thinker would say that there are many different ways to express "thirteen" and many different ways to halve something. Following are some examples.
6.5
13 = 1 and 3
THIR TEEN = 4
XIII = 11 and 2
XIII = 8
(Note: As you can see, in addition to six and one half, by expressing 13 in different ways and halving it in different ways, one could say one-half of thirteen is 6.5, or 1 and 3, or 4, or 11 and 2, or 8, and so on.)With productive thinking, one generates as many alternative approaches as one can. You consider the least obvious as well as the most likely approaches. It is the willingness to explore all approaches that is important, even after one has found a promising one. Einstein was once asked what the difference was between him and the average person. He said that if you asked the average person to find a needle in the haystack, the person would stop when he or she found a needle. He, on the other hand, would tear through the entire haystack looking for all the possible needles.)

How do creative geniuses generate so many alternatives and conjectures? Why are so many of their ideas so rich and varied? How do they produce the "blind" variations that lead to the original and novel? A growing cadre of scholars are offering evidence that one can characterize the way geniuses think. By studying the notebooks, correspondence, conversations and ideas of the world's greatest thinkers, they have teased out particular common thinking strategies and styles of thought that enabled geniuses to generate a prodigious variety of novel and original ideas.

STRATEGIES

Following are thumbnail descriptions of strategies that are common to the thinking styles of creative geniuses in science, art and industry throughout history.

GENIUSES LOOK AT PROBLEMS IN MANY DIFFERENT WAYS. Genius often comes from finding a new perspective that no one else has taken. Leonardo da Vinci believed that to gain knowledge about the form of problems, you begin by learning how to restructure it in many different ways. He felt the first way he looked at a problem was too biased toward his usual way of seeing things. He would restructure his problem by looking at it from one perspective and move to another perspective and still another. With each move, his understanding would deepen and he would begin to understand the essence of the problem. Einstein's theory of relativity is, in essence, a description of the interaction between different perspectives. Freud's analytical methods were designed to find details that did not fit with traditional perspectives in order to find a completely new point of view.

In order to creatively solve a problem, the thinker must abandon the initial approach that stems from past experience and re-conceptualize the problem. By not settling with one perspective, geniuses do not merely solve existing problems, like inventing an environmentally-friendly fuel. They identify new ones. It does not take a genius to analyze dreams; it required Freud to ask in the first place what meaning dreams carry from our psyche.

GENIUSES MAKE THEIR THOUGHTS VISIBLE. The explosion of creativity in the Renaissance was intimately tied to the recording and conveying of a vast knowledge in a parallel language; a language of drawings, graphs and diagrams — as, for instance, in the renowned diagrams of daVinci and Galileo. Galileo revolutionized science by making his thought visible with diagrams, maps, and drawings while his contemporaries used conventional mathematical and verbal approaches.

Once geniuses obtain a certain minimal verbal facility, they seem to develop a skill in visual and spatial abilities which give them the flexibility to display information in different ways. When Einstein had thought through a problem, he always found it necessary to formulate his subject in as many different ways as possible, including diagrammatically. He had a very visual mind. He thought in terms of visual and spatial forms, rather than thinking along purely mathematical or verbal lines of reasoning. In fact, he believed that words and numbers, as they are written or spoken, did not play a significant role in his thinking process.

GENIUSES PRODUCE. A distinguishing characteristic of genius is immense productivity. Thomas Edison held 1,093 patents, still the record. He guaranteed productivity by giving himself and his assistants idea quotas. His own personal quota was one minor invention every 10 days and a major invention every six months. Bach wrote a cantata every week, even when he was sick or exhausted. Mozart produced more than six hundred pieces of music. Einstein is best known for his paper on relativity, but he published 248 other papers. T. S. Elliot's numerous drafts of "The Waste Land" constitute a jumble of good and bad passages that eventually was turned into a masterpiece. In a study of 2,036 scientists throughout history, Dean Kean Simonton of the University of California, Davis found that the most respected produced not only great works, but also more "bad" ones. Out of their massive quantity of work came quality. Geniuses produce. Period.

GENIUSES MAKE NOVEL COMBINATIONS. Dean Keith Simonton, in his 1989 book Scientific Genius suggests that geniuses are geniuses because they form more novel combinations than the merely talented. His theory has etymology behind it: cogito — "I think — originally connoted "shake together": intelligo the root of "intelligence" means to "select among." This is a clear early intuition about the utility of permitting ideas and thoughts to randomly combine with each other and the utility of selecting from the many the few to retain. Like the highly playful child with a pailful of Legos, a genius is constantly combining and recombining ideas, images and thoughts into different combinations in their conscious and subconscious minds. Consider Einstein's equation, E=mc2. Einstein did not invent the concepts of energy, mass, or speed of light. Rather, by combining these concepts in a novel way, he was able to look at the same world as everyone else and see something different. The laws of heredity on which the modern science of genetics is based are the results of Gregor Mendel who combined mathematics and biology to create a new science.

GENIUSES FORCE RELATIONSHIPS. If one particular style of thought stands out about creative genius, it is the ability to make juxtapositions between dissimilar subjects. Call it a facility to connect the unconnected that enables them to see things to which others are blind. Leonardo daVinci forced a relationship between the sound of a bell and a stone hitting water. This enabled him to make the connection that sound travels in waves. In 1865, F. A. Kekule' intuited the shape of the ring-like benzene molecule by forcing a relationship with a dream of a snake biting its tail. Samuel Morse was stumped trying to figure out how to produce a telegraphic signal b enough to be received coast to coast. One day he saw tied horses being exchanged at a relay station and forced a connection between relay stations for horses and b signals. The solution was to give the traveling signal periodic boosts of power. Nickla Tesla forced a connection between the setting sun and a motor that made the AC motor possible by having the motor's magnetic field rotate inside the motor just as the sun (from our perspective) rotates.

GENIUSES THINK IN OPPOSITES. Physicist and philosopher David Bohm believed geniuses were able to think different thoughts because they could tolerate ambivalence between opposites or two incompatible subjects. Dr. Albert Rothenberg, a noted researcher on the creative process, identified this ability in a wide variety of geniuses including Einstein, Mozart, Edison, Pasteur, Joseph Conrad, and Picasso in his 1990 book The Emerging Goddess: The Creative Process in Art, Science and Other Fields. Physicist Niels Bohr believed that if you held opposites together, then you suspend your thought and your mind moves to a new level. The suspension of thought allows an intelligence beyond thought to act and create a new form. The swirling of opposites creates the conditions for a new point of view to bubble freely from your mind. Bohr's ability to imagine light as both a particle and a wave led to his conception of the principle of complementarity. Thomas Edison's invention of a practical system of lighting involved combining wiring in parallel circuits with high resistance filaments in his bulbs, two things that were not considered possible by conventional thinkers, in fact were not considered at all because of an assumed incompatibility. Because Edison could tolerate the ambivalence between two incompatible things, he could see the relationship that led to his breakthrough.

GENIUSES THINK METAPHORICALLY. Aristotle considered metaphor a sign of genius, believing that the individual who had the capacity to perceive resemblances between two separate areas of existence and link them together was a person of special gifts. If unlike things are really alike in some ways, perhaps, they are so in others. Alexander Graham Bell observed the comparison between the inner workings of the ear and the movement of a stout piece of membrane to move steel and conceived the telephone. Thomas Edison invented the phonograph, in one day, after developing an analogy between a toy funnel and the motions of a paper man and sound vibrations. Underwater construction was made possible by observing how shipworms tunnel into timber by first constructing tubes. Einstein derived and explained many of his abstract principles by drawing analogies with everyday occurrences such as rowing a boat or standing on a platform while a train passed by.

GENIUSES PREPARE THEMSELVES FOR CHANCE. Whenever we attempt to do something and fail, we end up doing something else. As simplistic as this statement may seem, it is the first principle of creative accident. We may ask ourselves why we have failed to do what we intended, and this is the reasonable, expected thing to do. But the creative accident provokes a different question: What have we done? Answering that question in a novel, unexpected way is the essential creative act. It is not luck, but creative insight of the highest order. Alexander Fleming was not the first physician to notice the mold formed on an exposed culture while studying deadly bacteria. A less gifted physician would have trashed this seemingly irrelevant event but Fleming noted it as "interesting" and wondered if it had potential. This "interesting" observation led to penicillin which has saved millions of lives. Thomas Edison, while pondering how to make a carbon filament, was mindlessly toying with a piece of putty, turning and twisting it in his fingers, when he looked down at his hands, the answer hit him between the eyes: twist the carbon, like rope. B. F. Skinner emphasized a first principle of scientific methodologists: when you find something interesting, drop everything else and study it. Too many fail to answer opportunity's knock at the door because they have to finish some preconceived plan. Creative geniuses do not wait for the gifts of chance; instead, they actively seek the accidental discovery.

SUMMARY

Recognizing the common thinking strategies of creative geniuses and applying them will make you more creative in your work and personal life. Creative geniuses are geniuses because they know "how" to think, instead of "what" to think. Sociologist Harriet Zuckerman published an interesting study of the Nobel Prize winners who were living in the United States in 1977. She discovered that six of Enrico Fermi's students won the prize. Ernst Lawrence and Niels Bohr each had four. J. J. Thompson and Ernest Rutherford between them trained seventeen Nobel laureates. This was no accident. It is obvious that these Nobel laureates were not only creative in their own right, but were also able to teach others how to think creatively.


Michael Michalko is the author of the highly acclaimed Thinkertoys: A Handbook of Creative Thinking Techniques; Cracking Creativity: The Secrets of Creative Genius; ThinkPak: A Brainstorming Card Deck and Creative Thinkering: Putting Your Imagination to Work.

 

comments powered by Disqus
RECOMMENDED
FOR YOU